Temperature modulation of ischemic neuronal death and inhibition of calcium/calmodulin-dependent protein kinase II in gerbils.
نویسندگان
چکیده
We used brief bilateral carotid artery occlusion in gerbils to examine the effects of temperature on ischemia-induced inhibition of calcium/calmodulin-dependent protein kinase II activity and neuronal death. In normothermic (36 degrees C) gerbils, ischemia induced a severe loss of hippocampal CA1 pyramidal neurons measured 7 days after ischemia (28.4 neurons/mm, n = 10; control density in 10 naive gerbils 262.1 neurons/mm) and a significant decrease in forebrain calcium/calmodulin-dependent protein kinase II autophosphorylation measured 2 hours after ischemia (12.9 fmol/min, n = 6; control phosphorylation in six naive gerbils 23.5 fmol/min). The effect of temperature on these indicators of ischemic damage was examined by adjusting intracerebral temperature before and during the ischemic insult. Hyperthermic (39 degrees C) gerbils showed almost complete loss of neurons in the CA1 region (3.0 neurons/mm, n = 11) and extension of neuronal death into the CA2, CA3, and CA4 regions. In addition, hyperthermia exacerbated ischemia-induced inhibition of calcium/calmodulin-dependent protein kinase II activity (4.2 fmol/min, n = 6). Hypothermia (32 degrees C) protected against ischemia-induced CA1 pyramidal cell damage (257.0 neurons/mm, n = 20) and inhibition of calcium/calmodulin-dependent protein kinase II activity (26.0 fmol/min, n = 6). Our results are consistent with the hypothesis that loss of calcium/calmodulin-dependent protein kinase II activity may be a critical event in the development of ischemia-induced cell death.
منابع مشابه
Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملExcitotoxicit Affects Membrane Potential and Calmodulin Kinase II Activity in Cultured Rat Cortical Neurons
Background and Purpose: Glutamate-induced excitotoxicity has been implicated as a causative factor for selective neuronal loss in ischemia and hypoxia. Toxic exposure of neurons to glutamate results in an extended neuronal depolarization that precedes delayed neuronal death. Because both delayed neuronal death and extended neuronal depolarization are dependent on calcium, we examined the effect...
متن کاملExcitotoxic activation of the NMDA receptor results in inhibition of calcium/calmodulin kinase II activity in cultured hippocampal neurons.
Neurotoxic effects of excitatory amino acids have been implicated in various neurological disorders, and have been utilized for excitotoxic models of delayed neuronal cell death. The excitotoxic glutamate-induced, delayed neuronal cell death also results in inhibition of calcium/calmodulin-dependent kinase II (CaM kinase II). In this report, we characterized the glutamate-induced inhibition of ...
متن کاملExcitotoxicity affects membrane potential and calmodulin kinase II activity in cultured rat cortical neurons.
BACKGROUND AND PURPOSE Glutamate-induced excitotoxicity has been implicated as a causative factor for selective neuronal loss in ischemia and hypoxia. Toxic exposure of neurons to glutamate results in an extended neuronal depolarization that precedes delayed neuronal death. Because both delayed neuronal death and extended neuronal depolarization are dependent on calcium, we examined the effect ...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 21 12 شماره
صفحات -
تاریخ انتشار 1990